So Ken, how's the water?

May 11, 2016

Ken Edwardson

NH Department of Environmental Services

So Ken, how's the water?

- →TRENDS & WATER QUALITY DATA
- **→**ISSUES
- → OPPORTUNITIES

TRENDS & WATER QUALITY DATA

- **→** DATA
- **→**TRENDS
- → ASSESSMENTS
- →ACCESSED DATA
- → ACCESSING ASSESSMENTS
- **→**ACTION

Water Quality Data

Environmental Monitoring Database (EMD)

2.5 million surface water grab samples

Data is available on the web

Rivers - Statewide Trend

Rivers – Androscoggin WS

Rivers - Connecticut WS

Rivers - Saco WS

Rivers - Merrimack WS

Rivers - Coastal WS

Rivers – 2011-2015 Medians

VLAP Lakes – Total Phosphorus

VLAP Lakes – Chlorophyll-a

VLAP Lakes - Transparency

Questions

WARNING!!!

All questions lead to more questions?

Beaches – Bacteria Advisories

Surface Water Quality Assessments

- Biennial report/List fulfills Federal & State requirements to assess water quality.
 - > 305(b) = All assessments.
 - > 303(d) = Impairments that need a Total Maximum Daily Load (TMDL) study.

Surface Water Quality Assessments

Assessments are governed by the Clean Water Act & NH Water

How much data in 2014?

Assessment Units (distinct 'waterbodies')	8,829
Sampling Stations	5,536
Parameters evaluated	187
Waterbody/ Use/Parameter combinations	77,831
Grab samples	1,003,757
Days of datalogger/parameter records	133,051
Water Quality Standard Comparisons	1,961,356

Where is the Aquatic Life data?

	Lake /Pond (by count)	Impoundment (by count)	River/Stream (by size)
Percent with aquatic life use support data	46%	9%	35%

Where is the Swimming data?

Where is the Drinking Water data?

Pollution Sources

Stormwater runoff causes or contributes to over 90% of the water pollution problems in N

Aquatic Life Use

Primary Contact Recrea

What about my Waterbody?

What about my Waterbody?

Surface Water Quality Report Cards

http://www2.des.state.nh.us/WaterShed_SWQA/WaterShed_

Report Card Access - Map Tool

43.615 -71.600 Degrees

i, HERE, DeLorme, USGS, METI/NASA,...

Report Card Access - Map Tool

Report Card Access - Map Tool

Designated Use Description	Parameter Name	Last Sample	Last Exceed
Aquatic Life	CHLORIDE	2013	NA
	DISSOLVED OXYGEN SATURATION	2013	NA
	OXYGEN, DISSOLVED	2013	NA
	TURBIDITY	2013	NA
	На	2013	2013
Drinking Water After Adequate Treatment	ESCHERICHIA COLI	2008	2008
	POTASSIUM	2009	NA
	SULFATES	2009	NA
Fish Consumption	Mercury		
Primary Contact Recreation	Escherichia coli	2008	2005
Secondary Contact Recreation	ESCHERICHIA COLI	2008	NA
Wildlife			

Severe	Poor	Likely Bad	No Data	Likely Good	Marginal	Good
Not Supporting, Severe	Not Supporting, Marginal	Insufficient Information – Potentially Full Supporting	No Data	Insufficient Information – Potentially Full Supporting	Full Support, Marginal	Full Support, Good

Good at the end of the pipe?

Designated Use Description	Parameter Name	Last Sample	Last Exceed
Aquatic Life	CHLORIDE	2013	NA
	DISSOLVED OXYGEN SATURATION	2013	NA
	OXYGEN, DISSOLVED	2013	NA
	TURBIDITY	2013	NA
	Н	2013	2013
Drinking Water After Adequate Treatment	ESCHERICHIA COLI	2008	2008
	POTASSIUM	2009	NA
	SULFATES	2009	NA
Fish Consumption	Mercury		
Primary Contact Recreation	Escherichia coli	2008	2005
Secondary Contact Recreation	ESCHERICHIA COLI	2008	NA
Wildlife			

Assessment Implications

- > TMDL may be required
- EPA Permitting NPDES
- EPA Stormwater Permits Program
 - > Multi-Sector General Permit
 - Construction General Permit
 - Small Municipal Separate Storm Sewer System Permits
- > Anti-degradation
- > 401 Certifications
- Non-Point Source, 319 Funding

Data from water suppliers?

ISSUES

- **→**SALT
- → NITRATE
- → CYANOBACTERIA

Salt

- Bad for the plumbing's health
- Bad for the environment's health
- > Bad for your health

Salted NH Surface Water

47 "known" segments exceed the Aquatic Life standard;

4 day > 230 mg/L or

1 hour > 860 mg/L

[Drinking water standard 250 mg/L]

Relationship of Salt Imports to Water Quality Violations

Relationship of Salt Imports to Water Quality Violations

Per Year, Per Square Mile

Relationship of Land Use to Salt Imports

Salted NH Groundwater

(USGS Open-File Report 2012–1236, 25 p., http://pubs.usgs.gov/of/2012/1236/.)

Action: Fall Salt Symposium

3rd Annual NH Salt Symposium

"Where Commercial Salt Applicators Come to Learn About Winter Property Management"

Held on September 13 at the Grapponne Center in Concord, NH

Action: Salt Applicator Certification Prog.

Nitrate

Seacoast Water Resources

- Increasing population
- Increasing demands

Growth in Water Withdrawals, 1960-2000

Nitrate Over Time – Lamprey GW

Nitrate Over Time – Site L73

Nitrate - Lamprey Subbasins

Population Drives Nitrate

Maximum Nitrate – Lamprey GW

> Homeowner Well Samples

- > 15% > 2 mg N/L
- > 5% > 4 mg N/L
 - ►(Gastric Cancer Risk Ward et al. 1996)
- > One well > EPA MCL (10 mg N/L)

Cyanobacteria

Cyanobacteria Basics

- Single cell organisms
- Toxins harm liver, nerves, and skin
- > ALS (under investigation)
- Many cases of drinking water causing illness
- Cattle, sheep, dogs, and waterfowl died

Cyanobacteria Terms

- > Chlorophyll-a (the green part)
- Phycocyanin (the light blue part)
- Common NH Cyanobacteria
 - > Anabena
 - > Microcystis
 - > Cylindrospermopsis
- > Types of Cyanotoxins
 - > Anatoxin
 - > Microcyctin
 - > Cylindrospermopsin

Where have there been blooms?

EPA Documents

Factsheet

"2015 Drinking Water Health Advisories for Tow Cyanobacterial Toxins", June 2015 (Doc # 820F15003)

Testing Recommendations

- "Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water" November 2015 (Doc #810R04003)
 - > Microcyctin
 - > Cylindrospermopsin

Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water

Product of the
United States Environmental Protection Agency
810R04003
November 2015

EPA Tool Options

Waterbody management component

Threat Identification

Educational component & watchers

Cyano Monitoring

Cyano Scope

Bloom Watch!

Fraining and Expertis

COST

Quality Assurance

Data/Information

EPA – Bloom Watch!

To determine the spatial and temporal patterns of bloom occurrence in the region

EPA – Cyano Scope

- > Determine the Occurrence and Distribution
- Genus/Species
- Assess Potential Toxicity

EPA – Cyano Monitoring

- Track Concentrations
- Efforts to Forecast Blooms
- > Determine Risk
- Assess Toxicity

EPA Outreach

New Outreach Efforts

- > Training modules
- YouTube tutorials
- Mobile lab training roadshow in 2016

NHDES Services

NHDES Cyanobacteria Hotline: 419-9229

- Chlorophyll-a
- > Phycocyanin
- Microscopic ID (Species/Counts)
- Exploring new testing (2016)
 - Enzyme-Linked Immunosorbent Assays (ELISA)
 - Liquid Chromatography / Mass-Spectrophotometer

Plan ahead in case all else fails?

ENVIRONMENTAL

29 Hazen Drive, Concord, New Hampshire 03301 • (603) 271-3503 • www.des.nh.gov

WD-DWGB-4-15 2009

Cyanobacteria and Drinking Water: Guidance for Public Water Systems NHDES Rapid Response Protocol Coming Soon

Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water

June 2015

Rib-bit

Episode IV

A NEW HOPE

TOOLS WATERSHED BASED PLANS EXAMPLE COLLABORATIVE SUCCESS

You Have Leverage Nationally

Drinking Water is Popular:

► In 2012, voters passed 81% of local measures for land conservation to protect drinking water. Measures approved bonds or tax increases, raising an estimated \$767 million.

You Have Leverage in NH

You Have Economics Loverage

Return on Investment:

> \$1 of protection SAVES \$27 in treatment costs.

Toolkit

Clean Water Act (CWA)

Safe Drinking Water Act (SDWA)

OPPORTUNITIES TO PROTECT DRINKING WATER SOURCES AND ADVANCE WATERSHED GOALS THROUGH THE CLEAN WATER ACT

November 2014

Published by: Association of State Drinking Water Administrators

Toolkit - Contents

iii. Introduction

Safe Drinking Water Act and Clean Water Act Fundamentals
Coordinating CWA and SDWA Implementation
Quick Start to Coordination

- I. Using Water Quality Standards
- II. Using Monitoring, Assessment, and Impaired Waters Listings
- III. Using Total Maximum Daily Loads
 - IV. Using National Pollutant Discharge Elimination System programs
 - V. Using Nonpoint Source and Clean Water Act 319 Programs

Introduction

Background

Desired Outcomes and Opportunities

Additional Resources

Toolkit - Examples

Appendix B

State-Specific Examples of Protecting Water Quality and Sources of Drinking Water

NH Watershed Based Plans

- > Restoration Plans
- Protection Plans

 NHDES, Watershed Assistance Section → Publications → Plans
 (http://des.nh.gov/organization/divisions/water/wmb/was/watershed_based_plans.htm)

Watershed Based Plans

Nine Steps to Success ("a-i")

Water Quality Data

- a) ID your pollution causes and sources
- b) Estimate the pollutant reductions needed
- c) What actions are needed to reduce pollutants
- d) Cost and authority
- e) Outreach and Education
- f) Schedule
- g) Milestones
- h) Success indicators and evaluation
- i) Monitoring plan

Watershed Planning Resources

- "NHDES" funding,
 - NHDES Watershed Assistance Section Nonpoint Source grants (section 319) and,
 - > Planning Grants through Regional Planning Commissions (section 604).
 - Source Water Protection Program
- > EPA and NHDES can provide technical assistance and support.
- > Additional funds and resources...

Additional Resources/Partners

- NH Conservation License Plate (Moose Plate) Program
- State: Fish and Game Dept., DOT, and others
- Federal: USDA/NRCS, NOAA, and others
- Regional planning commissions
- Municipalities
- Universities
- > etc.

Example: Lake Waukewan

- ➤ Meredith Water Supply
- ➤ Supply to 3,000 +/residents plus
 businesses
- > Recreational resource

2005: Watershed Management Plan

Funded through NHDES Watershed Assistance Section Nonpoint Source grants (section 319)

Septic System Risk Analysis (2009)

1st Phase: Evaluation and Certification

- Funded through the Source Water Protection Program
- Voluntary Cost Share Program 50/50
- Who had eligible properties?
 - New Hampton, Center Harbor, and Meredith properties located within 250 feet of lake
 - > Systems over 25 years in age
 - No operational approval on file

Evaluation Results

24 evaluations performed

13 systems found in failure (54%)

2nd Phase: Septic System Improvement Initiative

- Partially-Funded through the NHDES 319 Watershed Assistance Program
- Voluntary Incentive based
- Grant paid 1/3 of the cost for repair/upgrade up to \$4000
- > 14 replacements
- Reduction of 5.3 kg TP/yr to the lake (5,300,000,000 ug TP/yr)

Take Action

So Ken, how's the water?

- →TRENDS & WATER QUALITY DATA
- **→**ISSUES
- → OPPORTUNITIES

So, how is your water?

Ken Edwardson NHDES, Watershed Management Bureau